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The problem of a turbulcnt boundary layer that  evolves into a wake flow at the sharp 
trailing edge of a thin flat plate is considered ; the formal structure of the near-wake 
flow is investigated using matched expansions in the limit of infinite Reynolds 
number. The symmetric turbulent near wake is shown to develop a two-layer 
structure which is independent of turbulence model. The general asymptotic analysis 
shows that a thin layer at the wake centreline grows linearly with distance from the 
trailing edge while the centreline velocity varies logarithmically in a manner that is 
supported strongly by experimental measurements. The relatively thick outer layer 
of the near-wake flow is undisturbed by the evolution of the inner layer to leading 
order. An additional region near the trailing edge is required to resolve a non- 
uniformity in transverse velocity. The general asymptotic results are used to guide 
the development of a zonal turbulence model for the near wake in the form of a 
simple eddy viscosity formula. Analytic profiles for velocity and Reynolds stress are 
obtained for the near-wake region ; these profiles are shown to provide accurate 
representations of available near-wake experimental data. 

1. Introduction 
The flow that develops in the near wake of a surface as a boundary layer leaves a 

sharp trailing edge is a fundamental problem of considerable theoretical and 
practical significance. In particular, the effects of trailing-edge flows are recognized 
to be potentially significant in the design of airfoils as well as turbine and compressor 
blades; it is therefore of interest to develop methods for the accurate prediction of 
such situations. From a theoretical standpoint, the near-wake problem for a flat 
plate is the simplest situation a t  a trailing edge and here an abrupt change in 
boundary conditions occurs from the no-slip condition on the surface to a symmetry 
condition in the near wakc. If the surface boundary layer is laminar, the formal 
structure of the flow field is well understood ; the ncar-wake flow is described by the 
Goldstein (1930) solution and between this region and the upstream boundary layer, 
a triple-deck structure occurs (Stewartson 1969; Messiter 1970). It emerges that the 
laminar triple deck appears in a wide variety of other physical situations and 
subsequent studies led to major advances in the analysis of such problems as 
viscous-inviscid interactions, boundary-layer separation and internal flows (see. for 
example, Stewartson 1974; Smith 1982). A complete description for turbulcnt 
trailing-edge flows has yet to be established; the present study is intended to 
contribute to a more complete understanding of the situation when the snrfacc 
boundary-laycr floa- is turbulcnt. 
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The mathcmatical problem considered here is that of a turbulent flow a t  a trailing 
edge of a thin flat plate that is aligned parallel to a constant-pressure, uniform 
mainstream. A principal objective of this study is to describe the formal structure of 
the flow downstream of the trailing edge and results that  are independent of the 
turbulence model (used to close the governing equations) are of principal interest. To 
achieve this end. the method of matched expansions and singular perturbation 
theory are used to  identify the different regions of the flow field in the limit of infinite 
Reynolds number. The asymptotic analysis is carried out prior to  the adoption of a 
specific turbulence model and the approach is similar to the previous general analyses 
of Mellor (1972) and Fendell (1972) for attached turbulent boundary-layer flows. 

In the present work, some of the partial results obtained in previous studies are 
generalized and extended. A detailed critical review of previous theoretical 
investigations of turbulent trailing-edge flows has been given by Bogucz (1984) and 
only a brief summary is included here. Robinson (1969) considered the turbulent 
near-wake flow problem in an analysis based on previous work by Townsend (1965, 
1966) associated with determining the response of a turbulent boundary layer to an 
abrupt change in surface roughness. Townsend (1965, 1966) showed that the bulk of 
the boundary layer is slow to respond to the change a t  the surface and that most of 
the streamwise velocity profile persists for relatively long distances downstream of 
the modification. A similar behaviour occurs a t  a sharp trailing edge and Robinson 
(1969) was able to show that thc major changes in the profile occur in a region near 
the wake centreline ; using an informal analysis, he obtained a self-similar solution for 
this region that included a logarithmic dependence in the centreline velocity. More 
recently, Alber (1980) has proposed a detailed structure for the wake flow of a plate 
in which the wake is divided int>o a number of rcgions. A specific turbulence model 
is adopted a t  the outset of the analysis and Alber (1980) obtains solutions for some 
portions of the near-wake flow that exhibit a logarithmic dependence on centreline 
velocity. However, Alber’s (1980) adduced structure is based largely on intuitive 
arguments, some of which are questionable. For example, a region immediately 
downstream of the trailing edge on the wake centreline was proposed where the flow 
is assumed to bc governed by the laminar boundary-layer equations. In  addition, the 
extent of the dependence of the reported results on the intuitive reasoning and the 
adopted turbulence model is not clear; in fact, the turbulence model leads to a 
velocity profile in the near wake that has a non-vanishing velocity gradient on the 
wake centreline and this is not physically realistic. Prabhu & Patel (1982) also rely 
on a specific closure assumption to consider the near-wake flow problem, although 
the model is somewhat more general than that used by Alber (1980). An asymptotic 
analysis based entirely on the Cebeci & Smith (1974) turbulence model applied to the 
prediction of the turbulent boundary layer on a finite flat plate has been reported 
recently by Neish & Smith (1988), who also consider the development of the 
downstream wake flow using the Cebeci-Smith scheme. The suitability of the 
Cebeci-Smith model for wake calculations will be discussed subsequently, at which 
point further comment will be made regarding the wake results of Neish & Smith 

It is worth noting that a series of trailing-edge problems have been successfully 
analysed using asymptotic methods. Thesc studies include flow at the cusped trailing 
edge of a plate aligned a t  angle of attack to the mainstream flow (Melnik & Chow 
1975, Melnik, Chow & Mead 1977 ; Melnik 1980) and the flow a t  a wedge-shaped 
trailing edge (Melnik &: Qrossman 1981). In  these situations, it has been demonstrated 
that the turbulent boundary layer develops a three-layer structure near the trailing 

(1988). 
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edge ; however, such trailing-edge flows arc dominated by the prescnce of singularities 
in the leading-order external flow solution, which is not the case in the present 
problem. 

The asymptotic theory employed in the first part of this study leads to a general 
description of the flow structure at the trailing edge that is independent of turbulence 
model. However in order to produce a solution for the velocity and Reynolds stress 
profiles in the near-wake region, it is necessary to adopt a model for the Reynolds 
stresses that appear in the time-mean equations. In the near-wake region, the 
simplest possible eddy viscosity model was used to produce closure ; the results of the 
asymptotic theory were used to guide the selection of this model. 

The plan of the paper is as follows. In $ 2 ,  the structure of the flow upstream of the 
trailing edge is reviewed. The asymptotic analysis of the near-wake flow is presented 
in $3, and the principal results are discussed in $4. Suitable turbulence models for 
closure of the near-wake governing equations are presented in $5, and in $6,  
computed near-wake results are compared with cxperimental measurements. The 
principal results of the study are summarized in $ 7. 

2. The surface boundary layer 
Consider a flat plate of length I; that is immersed in an incompressible fluid of 

density p and absolute viscosity p; a flow of speed U, moves in a direction parallel 
to the plate surface. A Blasius boundary-layer flow develops in a direction 
downstream from the leading edge but when the Reynolds number, Re = pU, Lip, 
is sufficiently large, transition to a fully turbulent bountlary-layer flow occurs on the 
latter portion of the plate surface. I n  this study, the surface boundary layer 
approaching the trailing edge is assumed to be fully turbulent and nominally steady. 
The equations governing the time-mean flow field are taken to be the Reynolds 
equations ; in dimensionless form, the two-dimensional Kavier--Stokes equations 
are 

au a8 -+- = 0. 
ax ay I 

Here x and y are Cartesian coordinates with corresponding mean velocity components 
u and 8 ;  the plate coincides with the x-axis and the origin is located at the trailing 
edge. On the plate surface, the boundary-layer flow must satisfy the boundary 
conditions 

u = ~ = O  a t y = 0 ;  u + i  a s y + m .  ( 2 . 2 )  

P=P=Z7=O a t y = O  a n d a s y + c o .  (2.3) 

and any models for the turbulence terms must satisfy 

Although the asymptotic structure of a fully turbulent boundary-layer flow is well 
known (cf. Fendell 1072; Mcllor 1972). a bricf review of the principal features is 
necessary to establish the basis of the subsequent near-wake analysis. 

The turbulent boundary layer is a composite double laycr and an important small 
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parameter that arises in the asymptotic analysis in the limit Re-, co (Fendell 1972) 
is the friction velocity 

(2.4) 

wherc 7, is the local non-dimensional wall shear stress. In the outer layer, the 
streamwisc vclocity is in the form of a defect law and the Reynolds stress is O ( u i ) ,  

u*(x;  Re) = (7,(x; BPI): .  

(2.5) 
v1z. 

u =  l+u*- (x , r )+  ...) - U ” = u ’ , C 1 ( x , y ) +  .... 
ar 

In ( 2 . 5 ) ,  7 is the scaled outer-layer variable 7 = y/A,,(z; RP), wherc A ,  is a quantity 
proportional to the local boundary-layer thickness. and C, is a function that must be 
specified to define a particular turbulence model. The outer-layer lengthscale A ,  is 
O(u,) (Fendell 1972) ; however, if S* denotes the local (non-dimensional) displacement 
thickness, it follows (upon neglecting the contribution due to the wall layer) that  

S* = lom (1 -a)  dy = - A,u* limP,(x, r ) +  ... , (2.6) 
l p m  

and consequently a convenient choice is 

(2.7) 

It may than bc: shown that the leading-order form of the x-momentum equation in 
the outer layer is 

and the corresponding transverse velocity is 

The outer-layer velocity expansion in (2.5) is not uniformly valid and in order to 
satisfy the no-slip cwndition, a thin inner wall layer is required ; in this region, the 
convective terms are negligible to leading order (Fendell 1972) and the expansions 
are of the form 

= u* U + ( Y + ) +  ... ) -a = u’, a,(y+) + .. . 
Here. y+ is the scaled inner coordinate defined by 

(2.10) 

(2.11) 

and [’+ and (T, can be shown to satisfy 

I/’+”$ a; = 0. (2.12) 

Xote t,hat CT, is a function that must be specified to  define a particular turbulence 
model. 

Matching of the expansions (2.5) and (2.10) takes place in the limits y + O  and 
y+ + m and a self-consistent structure can be obtained for 

aF, 1 

a7 K 
---logr+C,. Cl- lf ... asrl+O. (2.13) 

1 
U+-- logy++Ci ,  ul- 1+ ... asy++co .  (2.14) 

K 
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I n  (2.13) and (2.14), K is the von K a r m h  constant and Ci is the inner ‘log-law’ 
constant, which are commonly assumed to have universal values of K = 0.41 and 
Gi = 5.0; C,, the outer ‘log-law’ constant, varies with x in general and depends on 
the specific outer-region turbulence model. The matching process produces a 
fundamental relation between scales, namely 

1 1  
- = -log(u,d,Re)+Gi-C,, 
u* K 

(2.15) 

which will be referred to as the match condition; this relation is often called the ‘skin 
friction relation’ and is well supported by experimental data (Rotta 1962). 

In the present configuration, the boundary-layer flow will approach a condition of 
self-similarity near the trailing edge provided the plate is long enough. Defining E 

E = lim u*(x;  Re), (2.16) 
by 

x+o- 

the expansions (2.5) and (2.9) near the trailing edge become 
- 

U =  l+~F;(q)+ ..., @=e2(vF;-E’,)+ ..., - u ’ w ’ = E ~ C , ( ~ ) +  .... (2.17) 

Here the primes denote differentiation with respect to q and (2.8) becomes 

-7F: = C;. (2.18) 

Using (2.13) and the conditions 

Fi,Zl+O as q+m,  (2.19) 

a useful first integral of (2.18) may be obtained according to 

Fl-yFi = Z,- l .  (2.20) 

It should be noted that the results in this section are general and may be derived 
independently of specific turbulence modelling considerations ; however, in order to 
obtain solutions for the velocity and Reynolds stress profiles, specification of 
turbulence models for the inner and outer layers is ultimately required. Suitable 
turbulence models are discussed in 95. 

3. The near-wake region 
3.1. Introduction 

As the turbulent boundary layer leaves the plate surface, the flow must adjurrt to the 
abrupt change in boundary conditions. On the plate surface, the streamwisc velocity 
satisfies the no-slip condition; in the wake, the u velocity profile must satisfy the 
symmetry condition of zero shear on the wake centreline and here strong acceleration 
is expected as a consequence of the sudden removal of the no-slip condition. In  this 
section the asymptotic structure of the near-wake region in the limit Re+ GO is 
described. The analysis is carried out generally without specifying a particular 
closure scheme for the unknown Reynolds stress terms ; indeed, the theoretical 
development indicates that  conventional closure schemes which are typically used 
for wall boundary layers are inappropriate for the near-wake flow. The present 
theory indicates the form required for near-wake flows and suitable models are 
ultimately developed in $5.  

The basic flow structure is depicted schematically in figure 1 .  The flow in the outcr 
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FIGURE 1 .  Xear-wake flow gcometry 

layer of thc surface boundary layer passes into an ‘outer-near-wake ’ region almost 
as if unaware of the disappearance of the plate. A thin ‘ inner-wake ’ region develops 
at  thc wake centreline and it is here that the primary effects of the change in 
boundary conditions at  the trailing edgc occur. As the flow evolves into the near 
wake. the outer-wake region is subject to perturbations induced by the accelerating 
flow in the inner wake. A third region that will be discussed in the subsequent 
presentation is an adjustment zone that is required to resolve a non-uniformity in the 
transverse velocity which arises in the outer layers of the trailing-edge flow. The 
wake structure is partially determined by requiring that the near-wake structure 
match the surface boundary-layer solution in the limit x+O+. I n  the subsequent 
analysis, the parameter t: denotes the limit of the skin friction velocity as x+0-, 
defined by (2.16) ; in addition, the surface boundary-layer scales A ,  and A ,  are taken 
to be constants equal to their values a t  the trailing edge in the limit x + 0-. 

3.2. The inner near w a k ~  

The near-wake analysis begins by consideration of a thin region along the wake 
centreline having a thickness proportional to A , ( x ;  Re) as indicated in figure 1.  At 
the outset, the thickness A ,  is unknown but is assumed to be formally bounded by 
the lengthscalcs of the surface boundary layer ; in the inner wake, a scaled normal 

In  order for the flow in the inner near wake to match the continuation of the outer- 
layer surface profile, it follows from (2.13) and (2.17) that  

+... as z + a ,  (3.2) 

for small positive x. This equation suggests that the streamwise velocity in the inner 
ncar wake should be written in the form 

(3.3) 
af U = u,(x; R e ) + € - +  ... . 
az 

Here u, is the leading-order approximation to the centreline velocity which is to be 
determined ; in addition f = f ( x ,  x) in general and with u, % t:, df/& represents the 
leading-order perturbation to the centreline velocity in the near wake. The 
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corresponding form of the transverse velocity follows from the continuity equation 
in (2.1), viz. 

(3.4) 

where the prime denotes differentiation with respect to x.  Finally, the pressure and 
Reynolds stress in the inner near wake are written according to 

p = po+€*p,(x,z)+ ..., -22 = e2a(x , z )+  ... . (3.5a,b) 

Here p ,  is the constant mainstream pressure and p1 is a perturbation term due to the 
displacement-thickness effect of the turbulent boundary layer on the plate surface. 
Note that (3.5b) is simply a statement that the Reynolds stress in the inner near wake 
has the same order of magnitude as in the surface boundary layer. To leading order, 
the Reynolds stress in the outer layer continues unaltered into the outer near wake 
and, in order for (T to match the outer-near-wake Reynolds stress, it follows that 

a-1 asz+co.  (3.6) 

Apart from condition (3.6), the function cr is taken to be an arbitrary function in this 
section since the principal interest is in obtaining results that are independent of an 
imposed turbulence model ; the analysis does however suggest an appropriate form 
for (T in the near wake. 

It is assumed that P in the near wake is of the same order of magnitude as in the 
surface boundary layer (i.e. O ( c 2 ) )  and upon substitution of (3.3)-(3.5) in (2.1), the 
leading-order terms in the streamwise momentum equation are 

(3.7) 

The omitted terms in (3.7) are O(d,) and O(AL) .  The absence of a lengthscale suggests 
a similarity solution may be available and this is possible if the second term and the 
coefficient of the third term are independent of x .  For this to occur, it  is evident that 
u, must be logarithmic in A , ;  the form consistent with condition (3 .2 )  at  the outer 
edge of the near wake is 

u,(x;  R e )  = l+- log 2 . (3.8) 

For convenience (and without loss of generality) the coefficient of the third term in 
(3.7) is taken equal to K ,  the von Karman const,ant, and this (in conjunction with 
(3.8)) provides the defining relation for the inner scale A , ,  viz. 

: (il 

This equation may be integrated to yield 

(3.10) 

where xo is a constant of integration. It is easily verified that A ,  = O(di) as x + Of for 
Re fixed and large, and it is convenient to take A ,  = Ai in this limit which defines the 
constant x,, according to 

(3.11) 

Note that for x % A i ,  xo in (3.10) is negligible. 
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With u, and A ,  defined by (3.8) and (3.10) respectively it follows that 

(3.12) 

furthermorc the last term on the left-hand side of (3.17) is O ( A 6 )  and therefore 
negligible. It is worth noting that a meaningful description of the inner near-wake 
flow requires that both the second and third terms in (3.7) enter the leading-order 
equation. The third term must be O(1) if the leading-order equation is to describe a 
non-trivial flow in the inner near wake ; the second term is required to be O( 1) in order 
that the inner-wake equation contains a new feature not present in the surface outer- 
layer description. namely the expected intense streamwise variation of u , ( x ;  Re) in 
the ncar wake. With the leading terms in the near-wake region given by a similarity 
solution according to 

(3.13) f ( X ,  2 )  = f , ( Z )  + . . .) Gqx. z )  = c7,(Z) + . . .) 
it is easily shown from (3.7) that  

1 - KZf; = f&,. (3.14) 

Herc the prime denotes differentiation with respect to z .  The boundary conditions for 
,f, and the Keynolds stress function are 

fw(0) =,f;(o) = cTw(0) = 0. 
on the wake centreline and 

(3.15) 

(3.16) f&+-logz+C,,  g w + l  as z+m. 

to match the continuation of the surface outer layer into the near wake. A useful first 
integral of (3.14) may be obtained by integrating from the wake centreline and using 
(3.15). It follows that 

Z-K(Z&-f,)  = gW. (3.17) 

The general asymptotic form off, a t  the outer edge of the inner near wake follows 
from (3.16) and (3.17), viz. 

1 
K 

(3.18) 

To obtain further details concerning the velocity distribution in the inner near wake, 
it is necwsary to specify a particular turbulence model for cW and this aspect is 
c.onsidcrcd in $5. 

The inner lengthscale A , ,  defined by (3.10), is a fundamental and general result of 
the analysis ; some significant features of A ,  warrant further discussion. In particular, 
in thc limit I & - ,  GO, is easily shown from (3.10) that  for fixed x 

(3.19) 

(notc that € + 0 in the limit Re + 00. and A ,  is O ( c ) ) .  It is evident that, to leading order, 
thc thic~kness of thc inner near wake grows linearly with distance from the trailing 
cdgc.. The behaviour of the ratio A n / €  given by (3.10) is depicted in figure 2 for several 
va1ut.s of e. along with thc limiting hchaviour A n / €  - K X  (the conventional valucs 
K = 0.41. C, = 5.0, and C, = 0.979 have becn used in preparing this figure). Note that 
for values of c typically encountered in practice (c % O.04), many terms in the 
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0 0.05 0.10 0.15 0.20 

FIGCRE 2 .  Development of scaled inner-wake thickness, A , / € .  
X 

expansion (3.19) would be required to obtain an accurate evaluation of A , .  While 
(3.19) describes the behaviour of A ,  at  fixed x in the limit Re + co, an alternative 
expression of (3.10) is appropriate for distances from the trailing edge comparable 
with the surface wall-layer thickness. Using (2.15), equation (3.10) may be rewritten 

(3.20) 

where here xo is given by (3.11). It follows that in the limit x+O, Re --f 03 with 
x/Ai fixed, A ,  is O ( A , ) .  

The relations that have been obtained for the inner-wake velocity and lengthscales 
may be used to evaluate the range of validity of the present analysis. It is easily 
confirmed using (2.15) and (3.8) that u, 9 E where A ,  9 Ai and vice versa. On the 
other hand. (3.20) shows that A ,  is O ( A , )  when x =  O ( A , ) ;  consequently the 
assumptions of the analysis are violated when x = O ( A , )  and it is necessary to 
introduce a new subregion O(A, )  x O(A, )  centred a t  the trailing edge. This subregion 
is shown schematically in figure 1 ; the zone contains the response of the surface wall 
layer to the change in boundary conditions at  x = 0 and here both u and fl are O(e) .  
In addition, all three Reynolds stress terms p, u'v'and p, which are O(e2) ,  enter the 
momentum equations (2.1) to leading order; thus it is necessary to  model three 
turbulence functions in order to obtain solutions in this region. However in the limit 
Re+ 03, the region is transcendentally small and since i t  does not appear to be 
significant in the leading-order description of the trailing-edge flow, it will not be 
considered further. 

A significant general result of the inner-wake analysis concerns the behaviour of 
the transverse velocity as z --f 03 which determines the influence of the inner wake on 
the outer portion of the wake shear layer. It follows from (3.4), (3.12), (3.13) and 

@ - - -  A',+ ... asz+co.  (3.21) 

Since A ;  > 0, (3.21) describes a continual inflow into the inner wake from the outer 
wake; this is the hehaviour that is expected on physical grounds to allow for an 

(3.18) that E 

K 
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acceleration of the streamwise velocity along the wake centreline. It is worth noting 
that, from (3.8), (3.9) and (3.21), the transverse veloci1;y into the inner wake is 
O(e2/uc) ;  thus as z+O+, 8 is eventually O(e) in the vicinity of the square region 
O(Ai) near the trailing edge. The negative transverse velocity into the inner near 
wake is in contrast to the surface boundary layer where v i;3 everywhere positive. The 
rest of the flow field must adjust to the negative zs in the inner wake, and the outer 
near-wake region is considered next. 

3.3. The outer near wake 

As the outer-layer surface flow evolves into the near wake, the streamwise velocity 
and Reynolds stress distributions are essentially preserved but the transverse 
velocity must respond to the inflow to the inner wake. The form of the expansion for 
v is suggested by (3.21) and in the outer near wake, the velocity components and 
Reynolds stress are written to leading order according to 

6 
u = 1 + eB;(q) + €X -FI,(y) + . . . , 

A0 
(3.22) 

(3.23) 

(3.24) 

Here E;(q) and Z,(q) are the velocity profile and Reynolds stress functions in the 
outer layer of the surface boundary layer evaluated as x-+O-; the function Fw(q) is 
a wake profile function which is to be determined subject; to the condition 

€ 

K n  
o = - - A ’ -  8 2 q&.(q)+..., 

-m = €2zl(q)+ ... . 

FW(O) = 0. (3.25) 

It is easily verified that the expansions (3.22)-(3.24) match the upstream boundary- 
layer solutions as x + 0 +  and the inner near-wake solutions as q + O  for fixed x. 
Substitution into (2.1) shows that the Reynolds stress gradient and the streamwise 
convection term are the dominant terms in the streamwise momentum equation and 
the leading-order equation is 

FI, = c;. (3.26) 

Since C, + 1 as 7 --f 0, i t  follows from (3.25) that  

447) = cl(7)- 1.  (3.27) 

The outer-wake function may also be expressed in terms of the surface boundary- 
layer profile F,(q) through (2.8) ; for a self-similar boundary layer a t  the trailing edge, 
(2.20) shows that 

F W ( 7 )  = F1(7)-7C(7).  (3.28) 

Since F i - 0  as q+ co, i t  may be seen using (2.7) that the asymptotic forms of Fw 
are 

F,+-l, Fk+O as q+co. (3.29) 
In  addition, for small q ,  

F ~ - - Y  asq+O, (3.30) 

and i t  may be confirmed from (3.22) that  the outer-wake function F, gives rise to a 
small deceleration a t  the outer edge of the inner near wake. 

K 
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FIGURE 3. Non-uniformity in outer-layer transverse velocity. 

It is worth noting that it may be easily shown, using the results of $2, that the 
leading term for au/ax in the outer layer of the surface boundary layer is 

(3.31) 

at  any x < 0. Consequently, in view of (3.26), the expansion in (3.22) represents the 
first two terms in a Taylor series expansion of U for fixed y evaluated as x + 0-, and 
(3.22) is simply the analytic continuation of the outer-layer surface profile into the 
wake. 

3.4. Trailing-edge adjustment region 
The leading-order near-wake solution described thus far is valid for x small and O( 1 )  ; 
however the description is not uniformly valid as x+O. One non-uniformity in the 
inner near-wake solution, associated with a transcendentally small region (as Re + 00) 
O(A,)  x O(Ai) near the trailing edge, has previously been discussed. An additional 
non-uniformity occurs in the outer-wake region as a consequence of the behaviour of 
the transverse velocity. On the plate surface, it follows from (2.9) that  the transverse 
velocity in the outer layer as x --f 0- is given by 

6 =  e2(yF;-F,)+ .... (3.32) 

Note that in the surface boundary layer 

@ + O  a s y + O ,  @ + e 2  asy-tco,  (3.33) 

for x < 0. I n  the outer near wake, 6 is given by (3.23) ; for fixed x + Ai, it follows from 
(3.19) that A ,  - ~ K X  as Re+ co and the leading-order form of (3.23) is 

6 = €2(yF; -F1 - 1) .  
I n  the outer near wake, 

(3.34) 

8 + - e 2  asy-tO, a+O asy+oo.  (3.35) 

As shown schematically in figure 3, (3.32) and (3.34) do not match as 1x1 + O  and an 
adjustment region of streamwise extent A ,  is required to resolve the non-uniformity. 

The leading-order boundary-layer and near-wake flows give rise to second-order 
velocity perturbations in the inviscid flow region which will be denoted by u1 and 
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t i l .  The complex velocity perturbation u, - iv, may be determined using thin-airfoil 
theory in terms of the distribution of the transverse velocity along y = 0, viz. 

Here z is the complex variable z = x+iy. The variation of wl(x, 0) is given by 

0 for x < xl, i 0 for x > 0. 
vl(x,O) = 2 for x, < x: < 0: 

(3.36) 

(3.37) 

where x1 denotes the effective starting location of the turbulent boundary-layer 
flow. Thc contributions due to the laminar and transitional boundary layers for 
- 1 < x < x1 are o ( 2 )  and are formally negligible with respect to the O ( 2 )  velocity 
associated with the turbulent boundary-layer flow. For the surface boundary layer, 
it follows by differentiation of (2.15) that u i  = O(u2,) ; hence the variation in vl(x, 0) 
is slow with respect to x and can be represented to leading order as 12 over the entire 
portion of the turbulent boundary layer. 

Substitution of (3.37) into (3.36) leads to the following solutions for u, and wl: 

€2 €2 
u1 = -- 27c log(x~+y2)+-log((x-x,)2+y2), 2x (3.38) 

€2 €2 
w1 = -argz-- arg (z-xl). 

7c x 
(3.39) 

Thus for y + 0, the perturbation velocities are small bat  become appreciable near 
x = 0 or near x = x,. 

An adjustment region with streamwise extent A ,  = O(d,) leads to a self-consistent 
description of the flow a t  the trailing edge and a resolutilon of the non-uniformity in 
transverse velocity. With the streamwise coordinate in tQis region formally defined 
by x" = x / A , ,  the dependent variables are written in terms of expansions about the 
surface boundary-layer and mainstream values, viz. 

(3.40) 

€2 

8 = - x @(x", 7) + €%,(Z, 7) + . . . , (3.41) 

and (3.42) 

In (3.40)-(3.42), G2, C2, and fi2 are perturbation functions to be determined and 
@(d, 7)  is the polar angle measured with respect to the positive x-axis, viz. 

(3.43) 
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In  the adjustment region, the Reynolds stress distributions are assumed to be 
independent of 2 to leading order, and to have distributions corresponding to those 
in the boundary layer immediately upstream of the trailing edge (see, for example, 
the discussion by Melnik 1980). Accordingly, the Reynolds stress terms in the 
adjustment region are written 

-p= E 2 Q(r)+...,  -p= € 2 R(7) + . . .) -m = €2C,(7) + . . .) (3.44) 

where the functions Q, R and 
as x+O-. 

adjustment region may be identified as 

are the limiting forms of the Reynolds stress terms 

Upon substitution of (3.40)-(3.44) into (Z.i), the leading-order equations in the 

The pressure fi2 may be eliminated from (3.45b,c) and it is easily shown that C2 
satisfies 

The solution for G2 is 
c2 = -C1(7) = 7-F;--F1-1, 

(3.46) 

(3.47) 

and the corresponding solutions for and 9, are 

c, = 2C;(y) = 27q, fiz = R(7). (3.48) 

The complete solution for the transverse velocity in the adjustment region is 

€2 
d = - O(Z, 7)  + €2[T@y-F1 - 11 + . . . , (3.49) 

7c 

and it may be seen that d varies smoothly in the outer layer in the vicinity of the 
trailing edge. 

4. Discussion 
The general asymptotic analysis described in the preceding section shows that the 

turbulent near wake has a well-defined double structure. The primary effects of the 
change in boundary conditions a t  the trailing edge are contained in a thin inner-wake 
region whose thickness grows linearly (to leading order) with distance from the 
trailing edge. In the outer layer, the boundary-layer flow evolves downstream of the 
trailing edge relatively undisturbed by the change in boundary conditions along 
y = 0 ; the streamwise velocity profile is determined by the outer-layer surface profile 
and a downward transverse velocity evolves to accommodate the accelerating flow 
in the inner wake. An outer-layer adjustment region O(d,) x O(d,) is required near 
the trailing edge in order to resolve a non-uniformity in transverse velocity; the 
solution for the transverse velocity in this region is essentially a continuation of the 
local perturbed inviscid flow. 

The development of the turbulent near-wake flow is rather different from the 
laminar near-wake flow originally described by Goldstein (1930). In  the laminar case, 
the near-wake region also exhibits a double structure but the inner-wake thickness 
grows proportional to xi, as opposed to linear growth with x in the turbulent case. A 
more significant difference between the two flow problems concerns the nature of the 
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outer-wake flow. In  the laminar case, the transverse velocity induced by the inner 
wake dominates the development of the outer wake and leads to important 
alterations in the streamwise profile ; in the turbulent case, the streamwise profile in 
the outer layer is relatively unaffected by the developing flow in the inner near wake. 
The structure of the flow near the trailing edge is also rather different; in laminar 
flow, the strong displacement effect of the inner wake produces a relatively 
significant modification of the mainstream pressure diiatribution near the trailing 
edge. The inviscid-viscous interaction is described by the ' triple-deck ' analysis of 
Messiter (1970) and Stewartson (1969) which shows that the effects of the trailing 
edge extend over distances O(Red), well beyond the O(Re-i) boundary-layer 
thickness. For a turbulent trailing-edge flow, the non-uniformity in G is resolved in 
a square adjustment region confined within the boundary layer. Significant 
displacement effects are evidently confined to a region that is exponentially small 
and O(A,)  a t  the trailing edge, through which the surface wall layer responds to the 
change in boundary conditions a t  the trailing edge, 

An important objective of the present analysis was to obtain general results and 
here the leading-order analysis has been completed without adopting a specific 
turbulence model. A considerable amount of information may be obtained from the 
general theory. For example, i t  follows from (3.3), (3.8) and (3.13) that along the wake 
centreline, the streamwise velocity may be written in the form 

ucL(x; Re) = l + s  -log 3 +a, . i: 6,) I 
Here a, is a constant equal to the value of j h  a t  the wake centreline ( z  = 0). To 
determine a,, a turbulence model for uw must be specified; the solution of (3.14) may 
then be obtained subject to conditions (3.15) and (3.16). It should be emphasized 
however that all other quantities and scales in (4.1) are known from the scales and 
constants that characterize the surface boundary layer a t  the trailing edge; the 
influence of turbulence model in (4.1) is therefore relatively weak. Expressions 
equivalent to (4.1) have been obtained in previous analytical treatments of the near 
wake ; as discussed in 9 1,  these works either have invoked a specific turbulence model 
a t  the outset (Alber 1980; Prabhu & Pate1 1982) or have employed informal 
analytical means (Robinson 1969). In  addition, an empirical relation similar to (4.1) 
has been suggested previously by Andreopoulos & Bradshaw (1980). 

Another general result concerns the behaviour of the Reynolds stress along the 
centreline. It is easily shown using (3.1), (3.5) and (3.14) that 

In  the limit of infinite Re, A ,  - E K X  a t  finite II: (cf. (3.19)) and thus (4.2) predicts that 
the Reynolds stress gradient decays on the centreline according to ~ / K X  to leading 
order. Strong support for this behaviour is evident in comparisons with experimental 
data given subsequently in $6. Finally, a displacement thickness S* may be defined 
for the surface boundary layer or the wake by 

S* = ~,m(l - t i )dy .  (4.3) 
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It may be shown using (3.3), (3.18) and (3.22) that the leading-order form for S* near 
the trailing edge is given by 

(4.4) 
€ A  

S*(x)  = 6*(0)---4+€2x+ ..., 
K 

where S*(O)  is the displacement thickness of the surface boundary layer evaluated at 
the trailing edge (as x -f V). 

In order to produce profiles for velocity and Reynolds stress in the wake, it is 
necessary to specify a turbulence model. This is considered in the next section, and 
in $6 a direct comparison of (4.1) and experimental data will be made. 

5. Turbulence models 
5.1. Introduction 

To obtain explicit velocity fields in both the wake and surface boundary layer, it is 
necessary to adopt specific turbulence models. I n  conventional closure schemes, the 
Reynolds stress is assumed to be related to the mean velocity field in some 
universal way. In  the present study, the turbulence models employed are tailored to 
reflect the features of individual flow regions in the simplest possible manner. This 
approach follows recent trends in turbulence research wherein the concept of a 
universal turbulence model is abandoned in favour of ‘zonal models’ that represent 
a specific geometrical or flow effect locally (cf. Kline 1982). Indeed, the sharp- 
trailing-edge problem provides an example for which it does not appear possible to 
extend a surface boundary-layer turbulence model without modification into the 
wake region in a rational way. 

Ideally, zonal turbulence models should reflect the nature of the averaged 
dynamics of the time-dependent turbulent flow. Recently, Walker, Scharnhorst & 
Weigand (1986) have described a model for the surface wall layer which reflects the 
experimentally observed coherent structure of the near-wall flow ; this model was 
used in the present investigation. The dynamics of the Reynolds-stress-producing 
events in the surface outer layer, as well as the near wake, are not well understood 
and in these regions an algebraic eddy viscosity model of the form 

was used, where c: is a specified function. It is worth remarking that a physical basis 
for (5.1) has never been established and that it should be regarded as an ad hoc model 
which is capable of describing mean turbulent flow behaviour in certain situations. 

5.2. Surface boundary-layer models 
It is well known from experimental observation over several decades that the time- 
dependent flow in the wall layer of a turbulent boundary layer exhibits a remarkable 
degree of coherent structure. The wall-layer flow is cyclical in character in which 
relatively long quiescent periods are disrupted by violent bursting phenomena ; in the 
bursting process, wall-layer fluid is ejected into the outer region of the boundary 
layer. The process may be viewed as a brief but strong viscous-inviscid interaction 
between the wall layer and the outer layer. It follows from (2.12) that  if the Reynolds 
stress function is known, the profile U’ may be obtained by integration and vice 
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versa. Walker at al. (1986, 1988) have argued that the principal contributions to 
U+ are made during the relatively long quiescent pcriods (see also Beljaars, Krishan 
Prasad & de Vries 1981). while contributions to &7 are made intermittently a t  
isolated spanwise and streamwise locations during the bursting process ; these 
authors then consider possible time-dependent solutions during a typical quiescent 
period in the wall layer. The detailed analysis (Walker r2 al. 1986) is caomplex but a 
time average of the results yields a relatively simple analytical expression for the 
mean velocity profile in the wall layer which has the func+tional form 

Cf = cr'(y'; K ,  8). (5.2) 

Here K is the von Karmtin constant and S = (Ti);, where Ti is the average period 
betwcen bursts (in wall-layer units). This wall-layer profile model has been compared 
extensively with experimental data by Scharnhorst, Walker & Abbott ( 1  977) and 
Yuhas & Walker (1982) who found thc model gives a vcry close representation of 
measured profile data. For a constant-pressure turbulent boundary layer, values of 
K = 0.41 and S = 10.5 yield excellent comparisons with experimental measurements; 
these values also produce the conventional value of the constant C, = 5.0 in the law- 
of-the-wall equation (2.14). In  addition, the corresponding value of Th = 110.2 
compares favourably with direct experimental measurements of the burst period. 

In specifying a modcl for closure of the outer-layer equation (2.8), it is convenient 
to definc a scaled eddy vlscosity function according to 

( 5 . 3 )  

using the outer scale defined in (2.7). It follows from (2.5) that  the outcr-layer 
Reynolds stress function is given by 

(5.4) 

The eddy viscosity function is constrained to behave in specific ways. First, to ensure 
the logarithmic behaviour in the velocity profile for small 7 indicated by (2.13), 
ern - KT as 7 f 0. A linear eddy viscosity throughout the outer layer is not acceptable 
since the solution of (2.18) must decay exponentially for large 7 ;  it follows that s, 
must approach a constant (at most) as 7 + CO. The simplest eddy viscosity 
distribution having these characteristics is the ramp funrtion 

K 
KV for 7 < 3,. 

for 7 < q 1  = K/K, 
6 ,  = (5.5) 

Here K i s  a constant that is usually taken to be about 0.016 (Mellor & Gibson 1966; 
Cebcci & Smith 1974). Note that the formula (5.5) has a discontinuity in slope at 
7 = rl ; it is possible to construct model functions for em that have a smooth variation 
evc.rywherc (Yuhas & Walker 1982) but one attractive feature of (5.5) is that 
solutions of (2.18) may be obtained in closed form, viz. 
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Here El is the exponential integral (Abramowitz & Stegun 1964) and yo is Euler’s 
constant, The outer-layer Reynolds stress distribution is easily obtained from (5.4), 
and in (5.6) the outer-layer log-law constant is given by 

It may be observed that the outer-layer solution contains the two constants, K and 
K .  For the conventional values of K = 0.41 and K = 0.016, equation (5.7) yields 
C, = 0.97936. 

5.3.  Near-wake models 

In  53.3, it was shown that the solution in the outer near wake is a continuation of 
the surface outer layer and consequently the Reynolds stress distribution is given by 
(5.4)-(5.6). For the inner near wake, i t  may be confirmed using (3.3), (3.5) and (5.1) 
that the eddy viscosity and inner-wake stress functions must have the form 

e; = e A , ( z ;  Re) emw(z) ,  gw = emw(z)f;(z). (5.8) 

Here emw is a scaled eddy viscosity function for the inner-wake region which is to be 
selected subject to two constraints. First, em, - KZ as z+ co in order to match the 
outer-near-wake distribution given by ( 5 . 5 ) .  The second constraint is obtained by 
substituting (5.8) into (3.17) and expanding f, in a Taylor series about the wake 
centreline z = 0 wheref,(O) =f;(O) = 0; it is easily shown that emw cannot vanish a t  
the wake centreline. The simplest function that satisfies these constraints is the ramp 
function 

KZ for z 2 a,  
KU for z < a. (5.9) 

Here a is a model constant to be determined subsequently from comparisons with 
experimental data. 

The eddy viscosity model in (5.9) has a discontinuity in slope a t  z = a ;  in principle, 
it  is possible to develop a model function that has a smooth variation throughout the 
inner wake but one advantage of (5.9) is that a solution of (3.14) is readily obtained 
in closed form. The solution for the inner-wake velocity perturbation is 

(5.10) 1 1 
-[logz-a,E,(z)]+C,, z 2 a. 
K 

1 f&4 = 
- D 1 ( 4 ) + C , + - a , ;  K (2a)U K Z < a. I 

Here D, is the integral of Dawson’s integral Do(x) (Abramowitz & Stegun 1964), 
viz. 

Do(x)  = eCZ2 et2 dt, D,(z) = 
0 

(5.11) 

In  addition, the constants a, and a2 in (5.10) are given by 

a, = ea[1-(2a)lDo((ta)l)l,  a2 = l o g a - a , ~ ~ ( a ) - 2 ~ ~ ( ( ~ a ) ~ ) .  (5.12) 

The inner-wake Reynolds stress function is easily obtained from (5.8) and (5.10) and 
is given by 

(5.13) 
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FIGURE 4. Inner-wake profiles obtained with model (5.9) for various a (with K = 0.41 and 
C, = 0.979). ( a )  Inner-wake velocity profiles. ( b )  Inner-wake Reynolds stress profiles. 

The velocity and Reynolds stress distributions in the inner near wake are given by 
(5.10)-(5.12) which contain the von K k m a n  constant K ;and the single inner-wake 
modelling constant a; there is also an implicit dependence on K through the outer 
‘log-law’ constant C, (cf. (5.7)). A value of the constant a will be obtained in $6  
through direct comparisons with experimental data. It is worth discussing here the 
general features of the inner-wake solution for various values of a. 

In  figure 4 ( a ) ,  a series of inner-wake velocity profiles are plotted for various values 
of a (with K = 0.41 and C, = 0.97936). The logarithmic curve in this figure 
corresponds to the asymptotic behaviour for large z and it, may be observed that all 
profiles quickly approach the asymptotic condition. The curve labelled a = 0 is a 
limiting case which, from (5.9), corresponds to a linear eddy viscosity variation 
across the entire inner wake ; this model was adopted by Alber (1980) but it may be 
observed that the velocity profile has a non-zero slope a t  the wake centreline which is 
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not physically realistic. All positive values of a lead to velocity profiles that satisfy 
the symmetry condition f k ( 0 )  = 0 a t  the centreline. 

In figure 4 ( b )  the inner-wake Reynolds stress profiles given by (5.13) are plotted 
for several values of a; it is evident that the nature of the inner-wake Reynolds stress 
distribution changes a t  a certain critical value a = a,. For a > a,, a bulge appears in 
the Reynolds stress profile and this does not seem acceptable on physical grounds. 
The Dawson integral Do(x) has a maximum a t  x = x, = 0.92414 and if (fa); > x,, the 
maximum in Do will be contained in the region z < a.  Consequently, in order to avoid 
a bulge in the cW profile, it would appear that acceptable values of a must be in the 
range a < a,, where a, = 2x,2 = 1.7081. 

The eddy viscosity distributions adopted here for the near-wake region may be 
consolidated into a composite function. In terms of the outer-wake coordinate 7,  the 
eddy viscosity distribution at any streamwise position may be written 

where qw is defined by 

(5.14) 

(5.15) 

The composite eddy viscosity model is shown schematically in figure 5. At the 
trailing edge, the eddy viscosity distribution has the simple ramp form associated 
with the conventional surface outer-layer model. In the near wake, the linear 
behaviour 6 ,  = K? occurs between 7 = ql = K / K  and = qW, which is the curve 
defined by z = a ;  below 7 = 7w the eddy viscosity is constant all the way to the wake 
centreline. As the inner wake spreads, A n  increases, which leads to an increase in 
yw as well as the centreline eddy viscosity, which has the value KaAn/A, .  Eventually, 
the centreline value grows to the outer-wake value K .  At this stage, the eddy 
viscosity distribution is constant across the wake and the present inner-wake model 
ceases to be appropriate ; note that this occurs at the streamwise location xK defined 

(5.16) A , ( x ,  ; Re) = - A,(Re). 

Downstream of the position z,, a suitable turbulence model involves an eddy 
viscosity distribution that is uniform across the wake. The development of the small- 
defect wake at large distances from the trailing edge is well known to be described 
accurately by such a model (see, for example, Townsend 1976). However, upon 
comparison with the popularly accepted eddy viscosity value for small-defect far 
wakes (Tennekes & Lumley 1972; Townsend 19761, i t  emerges that value for the far- 
wake flow is nearly three times the outer-layer value e, = K .  Consequently, a 
transition region, in which the eddy viscosity value grows with distance from the 
trailing edge, is required to complete the modelling of the wake flow. The modelling 
and prediction of wake flows in this region will be reported elsewhere. Nevertheless, 
it should be noted that the present near-wake turbulence model provides the simplest 
transition between a conventional model in the surface boundary layer and a uniform 
eddy viscosity distribution in the wake ; the eddy viscosity on the centreline increases 
proportional to the thickness of the inner wake. 

It is appropriate here to comment briefly on the recent analysis of Neish & Smith 
(1988). which employs the eddy viscosity model of Cebeci & Smith (1974) for both the 

K by 

KOI 

19.2 
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surface boundary layer and the wake flow regions. In  1,he outer-layer regions, the 
Ccbc>rj-Smith scheme is similar to the present model given by (5 .5 ) ,  except that it 
employs a mixing-length formulation to prescribe the small-q behaviour which is 
consistent with a logarithmic velocity profile. The validity of the mixing-length 
portion of thc model, which was developed especially for wall-bounded flows, must 
be regarded as highly doubtful when applied to wake calculations. Indeed, the 
mixing-lcngth portion of the model produces a cusp in the streamwise velocity 
profile. which is similar to the case a = 0 in figure 4(a) .  Neish & Smith (1988) show 
that this physically unacceptable behaviour can be resolved in a thin layer 
O ( K r - f d )  at the wake centreline that involves a balance of inertia, Reynolds stress, 
and viscous stress terms. This structure is highly dependent upon the specific 
turbulence model used. In addition, it should be noted that the Ccbeci-Smith model 
is inronsistrnt with the well-known description of the small-defect wake that evolves 
a t  large distances from the trailing edge. 

6. Near-wake flow calculations 
6.1.  Introduction 

The objective of this section is twofold. First, the method of determining the 
modelling constant a that  appears in the near-wake eddy viscosity function is 
described and a single value for practical calculations is selected. Second, the 
analytical velocity and Reynolds stress profiles obtained in this study are compared 
directly with experimental data obtained from four modern studies : Chevray & 
Kovasznay (1969), Pot (1979), Andreopoulos & Bradshaw (1980) and Ramaprian, 
Patel & Sastry (1981. 1982). (Useful insight into the structure of trailing-edge flows 
is provided by Haji-Haidari bt Smith 1988, who employed a relatively thick plate 
with a wedge-shaped trailing edge. This type of experimental model is outside the 
scope of the present work, as discussed by Bogucz 1984.) 

There are several features of the experimental configurations that are not taken 
into account in the present theory, which pertains to an infinitesimally thin flat 
plate. The experimental studies and the associated issues of concern are discussed in 
detail by Bogucz (1984); a brief summary of conclusions is given here. The 
experimental plate models used by Pot (1979) and Ramaprian et al. (1982) had 
trailing-edge thicknesses that are potentially significant ; evidence of unsteady 
separation phenomena at the trailing edge is apparent in the Reynolds stress data 
reported in these studies. In  the experiments of Andreopoulos & Bradshaw (1980), 
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the tapered trailing edge of the plate model as well as the finite wind-tunncl 
dimensions combine to produce a significant mainstream pressure gradient a t  the 
trailing edge. Finally, in the study of Ramaprian et al. (1982), velocity data in the 
near wake were obtained in three separate measurements (a total head tube and two 
separate x -wire probe orientations) ; unfortunately the different methods produce 
substantially different data a t  some locations (see Ramaprian et at. 1981). The 
discrepancies are not resolved by the authors and consequently the accuracy of the 
reported near-wake measurements is uncertain. 

The near-wake flow evolves continuously from the profiles in the surface boundary 
layer immediately upstream of the trailing edge and good predictions of the wake 
flow can only be expected if the initial surface boundary-layer profile is well 
represented. A particular velocity profile representation fixes the friction velocity e 
a t  the trailing edge, the scales A i  = (€Re)-' and A ,  = S*/s as well as the von Karman 
constant K and the 'log-law constants' G, and C,. If measurements were available a t  
several stations in the surface boundary layer, detailed comparisons with data could 
be carried out using a boundary-layer prediction method to obtain an accurate 
representation of the velocity profile as the flow approaches the trailing edge. 
Unfortunately, sufficient measurements of the surface boundary-layer flow arc not 
reported in the experimental studies. Only Ramaprian et al. (1981) report 
measurements in the upstream boundary layer but these are limited to one 
streamwise location. In the studies of Chevray & Kovasznay (1969) and Andre- 
opoulos & Bradshaw (1980), the first streamwise location for reported measurc- 
ments is apparently just downstream of the trailing edge (at x = 0'). The first 
streamwise data station reported by Pot (1979) is in the wake (at x = 0.016). 

In the absence of any detailed information concerning the development of the 
surface boundary layer, the velocity profile a t  the trailing edge was represented by 
a composite profile consisting of the wall-layer profile given by (5.2) and the defect 

1 F;(~)+u+(y+)-ilog7/--C, 1 
profile in (5.6), viz. 

It should be noted that a self-similar, constant-pressure boundary-layer flow at the 
trailing edge has been assumed in obtaining (6.1) and that these conditions may not 
be realized a t  the trailing edge in the cited experiments. It may be inferred that (6.1) 
implicitly contains the three parameters K ,  S and K which, in principle, should 
assume 'universal' values, a t  least in a constant-pressure flow. The values K = 0.41, 
S = 10.5 (which gives Ci = 5.0) and K = 0.0160 are conventionally accepted, and 
provide good representations of experimental data for zero-pressure-gradient 
boundary layers ; these constants uniquely determine the inner and outer 
logarithmic-law constants Ci and C,. For each data set, the displacement thickness 
in the surface boundary layer at the trailing edge was estimated by numerical 
integration of the raw data a t  the first data station ; using this value of S* and with 
A ,  = S*/u,, the value of the friction velocity a t  the trailing edge e was computed 
from the match condition (2.15). The values obtained in this manner are listed in 
table 1 ( a )  for each experimental study. Note that the value of e is within the range 
of estimates 0.0374.046 given by Chevray & Kovasznay (1969); the value of 
e = 0.0359 is comparable with the estimate c = 0.036 given by Andreopoulos 
& Bradshaw (1980). 

For two of the experimental data sets, the conventional turbulence model 
constants did not provide a completely satisfactory representation of the measured 
data a t  the trailing edge ; this may occur either because pressure gradient effects are 
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( a )  Conventional modelling constants (S  = 10.5, K = 0.0160) 

Study Re s* 
Chevray & Kovasznay (1969) 6.55 X lo5 0.00353 
Andreopoulos & Bradshaw (1980) 6.60 x lo6 0.00264 
Pot (1979) 1.20 x 106 0.00350t 
Ramaprian e t  al. (1981) 2.66 x lo6 0.00276$ 

(b )  Optimized modelling constants 

Study S K ci c, 
Chevray & Kovasznay (1969) 8.10 0.0168 3.478 1.114 
Andreopoulos & Bradshaw 8.57 0.0121 3.766 0.099 

( 1980) 

t Value estimated from experimental measurements a t  z = 0.016. 
1 Value estimated from experimental measurements a t  z = -0.0423. 

E X K  

0.0436 0.1771 
0.0359 0.2185 
0.0410 0.2065 
0.0389 0.1873 

TABLE 1. Trailing-edge boundary-layer scales and constants 

E XK 

0.0470 0.1534 
0.0364 0.1873 

important or because the flow has not entirely achieved self-similarity at the trailing 
edge. In  the absence of information concerning the development of the surface 
boundary layer, it  is not possible to pursue this matter. However, since a good 
representation of the profile data at the trailing edge is important in relation to the 
near-wake description, an improvement was sought through optimization of the 
model constants S and K to produce the best fit to the data a t  the initial station a t  
the trailing cdge, following the approach of Scharnhorst et al. (1977) and Yuhas & 
Walker (1982). The trailing-edge velocity data of Chevray & Kovasznay (1969) is 
represented extremely well by the profile (6.1) with the conventional constants; 
direct two-parameter optimization on S and K produced essentially the same results 
as in table l ( a ) .  However, one difficulty is that the reported Reynolds stress data a t  
x = 0+ has a peak a t  a value that indicates a trailing-edge friction velocity of 
E = 0.0470 in contrast to the value of 0.0436 in table l ( a ) .  ,4 least-squares fit of the 
reported velocity profile was performed with S and K as parameters, subject to the 
constraint e = 0.0470 ; in this manner, it was possible to obtain good representations 
of both the velocity and Reynolds stress profiles a t  the trailing-edge and the 
optimized results are given in table l ( b ) .  

An accurate representation of the data a t  the trailing edge for the experiments of 
Andreopoulos & Bradshaw (1980) is somewhat more difficult in the context of the 
present theory. Significant pressure gradient effects evidently were present in the 
flow near the trailing edge ; Pate1 (1981) and Bogucz (1984) have used independent 
methods to estimate that the Clauser parameter /3 = - S*U, UL/u: z 0.5 for the flow 
near the trailing edge. In an attempt to  obtain an improved representation of the 
reported data, the parameters S and K were varied to produce an optimal least- 
squares fit of the velocity data a t  the trailing edge and the results are given in table 
l ( b ) .  Note that the data used for this purpose correspond to  those reported by 
Andrcopoulos in Kline, Cantwell & Lilley (1981). 

6 2 .  Evaluation of the inner-wake eddy viscosity constant 
For a given representation of the surface boundary-layer profile a t  the trailing edge, 
the near-wake solution is completely determined except for the value of the inner- 
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FIGURE 6. Inner-wake model constant a2 
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region eddy viscosity constant a in (5.9). A means of determining a value for a is to 
make a comparison with experimental data along the centreline. It follows from (3.3) 
and (3.8) that the predicted centreline velocity (in defect form) behaves according 
to 

In  the context of the general asymptotic analysis of $3,  a, is a constant that can be 
determined by direct comparison with experimental data. For the specific inner- 
wake turbulence model described by (5.1), (5 .8)  and (5.9), the value of a, follows from 
(5.10) and is 1 

a, = C,+-u,(a). (6.3) 
K 

Here a2 is the function of the modelling constant a defined in (5.12); its variation 
with a is shown in figure 6. Note that for a given velocity profile a t  the trailing edge, 
a, depends only on a. 

Using near-wake centreline velocity data from each experimental study, 
the value of a, in (6.2) was systematically varied to produce the best fit to the data in 
the least-squares sense. The data used in this process were restricted to the range 
5004, < x < 0.15 A,,/€ to avoid effects of the O(4,) wall-layer adjustment region for 
small x and the influence of deviations from the near-wake similarity solution for 
larger values of x. The values of a,, and the corresponding values of a2 and a ,  
determined by this procedure are given in table 2 for each set of trailing-edge profile 
constants listed in table 1. Note that for the data of Ramaprian et al. (1981), three 
entries are listed, corresponding to the measurements taken with a total-head tube 
and a x -wire as well as an arithmetic mean; centreline data that were used for this 
purpose were restricted to data stations where both types of measurements were 
taken. When it is considered that a deviation of 0.1 in a, represents a change in 
centreline velocity of 0 . 1 ~  (or about 0.6% for typical values), it may be inferred that 
the values of a, are in good agreement between the different experiments. 

There are two possible approaches for determining a value of a for all subsequent 
predictions of velocity and Reynolds stress profiles in the near wake and these are: 
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( a )  Conventional surface boundary-layer constants 

a Comments Study a, a2 

Chevray & Kovasznay (1969) 0.0604 -0.3768 0.5534 
Andreopoulos & Bradshaw (1980) 0.2429 -0.3020 0.8340 

Pot (1979) 0.0715 -0.3722 0.5692 

Ramaprian et al. (1981) 0.5798 -0.1638 1.4772 Head-tube data  
-0.0423 -0.4197 0.4114 x -wire data  

0.2678 -0.2918 0.8758 Averaged data  

( b )  Optimized surface boundary-layer constants 

Study a0 a2 

Chevray & Kovasznay (1969) 0.2279 -0.3632 0.601 1 
Andreopoulos & Bradshaw (1980) 0.3027 0.0836 3.1632 

TABLE 2. Inner-wake eddy viscosity a determined by least-squares fit of equation (6.2) 

- -I 10 

-2OlO-a F d  10-2 10-1 

AlIIdo 
F i c t : K i <  7. Defect centreline velocity: 0, Chevray & Kovasznay (1969); A, Andreopoulos & 
Bradshaw (1980) ; 0 ,  Pot  (1979) ; + , R,amaprian et al. (1981) head-tube d a t a ;  x , Ramaprian et al. 
(1981) x -wire da ta ;  -, equation (6.2) with a, = 0.0927. 

(1) regard a. as a universal value and determine a from (6.3) for each flow ; or (2) 
regard a as a universal constant and compute a, from (6.3) for each case. For the set 
of surface boundary-layer constants normally associated with constant-pressure 
flows (8 = 10, K = 0.016), the values of a, = 0.1 and CL = 0.6 are judged repre- 
sentative of thc values listed in table 2. The results for the two sets of optimized 
trailing-edge constants are not conclusive; the results for the data of Chevray & 
Kovasznay (1969) tend to support the idea of a universal value of a while the data 
of Andrcwpoulos & Bradshaw (1980) tend to support a fixed value of a,. However, the 
data of Andreopoulos & Bradshaw (1980) are thought to contain pressure gradient 
effects that  are not accounted for in the present theory and no definitive 
recommendation is possible a t  this stage for such flows. For surface boundary-layer 
flows which may be adequately predicted using the coiiventional constants, the 
rcprcsentative value of a = 0.6 is recommended and this produces values of 



The turbulent near wake at a sharp trailing edge 579 

3 3 

FIGURE 8. Comparison of near-wake predictions with experimental measurements of Chevray & 
Kovasznay (1969) ; ( a )  Velocity-defect profiles ; ( b )  Reynolds stress profiles (---. conventional 
surface boundary-layer constants ; -, optimized surface boundary-layer constants). 

a2 = -0.3635 and a,, = 0.09273. This value of a (along with the conventional set of 
surface boundary-layer constants) will be shown subsequently to provide very good 
representations of near-wake experimental data, including the measurements of 
Andreopoulos & Bradshaw (1980). 

The defect centreline velocity given by (6.2) with a, = 0.09273 is plotted as a 
function of log(A,/A,) and compared with measured data in figure 7. Note that the 
data reported by Ramaprian et al. (1981) using both total head and x -wire probes 
are included ; the former measurements progressively diverge from the other data for 
decreasing x which raises questions about the accuracy of the total-head tube data. 
Apart from one set of data, the variation in centreline velocity data predicted by 
(6.2) is strongly supported by the measurements. 

6.3. ProJile data comparisons 
In  $5.3, analytical functions were obtained which describe the velocity profile and 
Reynolds stress development throughout the near-wake region ; in this section, these 
profiles are compared direct.ly with experimental profile data. At the outset, it  is 
important to delineate the streamwise range of validity of the present solutions. 
When x = O(Ai) the present near-wake description is not uniformly valid. For 
practical purposes, the present inner-wake solutions may be used for x greater than 
a few hundred multiples of Ai ;  note that x = 500Ai, for example, is a rather small 
distance from the trailing edge and that very few experimental measurements have 
been taken in this range. The largest value of x for which the present solutions apply 
is a t  x = x K ;  a t  this location (which is given by (5.16) and is tabulated in table l ) ,  the 
inner-wake eddy viscosity model becomes uniform across the entire wake. 

A composite expansion for the near-wake velocity profile may be written as 
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FIGURE 9. Comparison of near-wake predictions with experimental measurements of Andreopoulos 
& Bradshaw (1980) : ( a )  Velocity-defect profiles ; ( b )  Reynolds stress profiles (---, conventional 
surface boundary-layer constants ; -, optimized surface boundary-layer constants). 

where the functions u,, F ;  andfl, are given in (3.8), (5.6) and (5.10) respectively. The 
composite expansion for the near-wake Reynolds stress is 

-m = €2[CTw(Z) +C1(y)- 11, (6 .5)  

where C, and (7, are given by (5.4) and (5.13) respectively. 
Predicted velocity and Reynolds stress profiles for the tvvo near-wake data stations 

of Chevray & Kovasznay (1969) are shown in figure 8 ;  the representations for the 
initial profiles a t  the trailing edge are also shown. Note that results for both the 
conventional and optimized set of surface boundary-layer constants are displayed in 
the figure; the inner-wake eddy viscosity constant a = 0.6 was used for both sets of 
profiles. The analytical profiles agree very favourably with the data for the optimized 
set of trailing-edge constants and reasonably well for the conventional set. Differences 
between the results obtained with the two sets of constants are seen to decrease with 
downstream distance from the trailing edge. 

Predicted profiles for the data of Andreopoulos & Braclshaw (1980) are shown in 
figure 9 for both sets of surface boundary-layer constants and with a = 0.6 for both 
sets of comparisons. It is evident that the initial velocity profile a t  the trailing edge 
is not well represented by the conventional set of surface constants. However, the 
rcpresentation of subsequent downstream profiles improves with increasing distance 
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FIGURE 10. Comparison of near-wake predictions with experimental measurements of Pot (1979) : 
(a) Veloeity-defect profiles ; ( b )  Reynolds stress profiles. 

from the trailing edge and it is apparent that any pressure gradient effects present 
in the trailing-edge profile progressively diminish in the near wake. It may be 
observed that the velocity profiles with the optimized set of surface constants 
represent the initial velocity profiles very well but then underpredict the velocity a t  
the centreline at  subsequent data stations. Note that the value of 01 = 0.6 used in 
preparing figure 9 is considerably less than the value suggested by the least-squares 
fit to centreline velocity measurements (see table 2 b ) .  Nevertheless, the qualitative 
behaviour of the analytical profiles is sound and the quantitative differences between 
the predictions and data are small (typically, the differences are O(e)  or smaller, 
where e = 0.036 in this case). 

Figure 10 shows predicted velocity and Reynolds stress profiles for the two near- 
wake data stations of Pot (1979). Note that the Reynolds stress data a t  the first 
station have a maximum value of approximately 1.82,  which is not well represented 
by the present theory. This discrepancy is believed to  be caused by the relatively 
thick trailing edge of the experimental model used by Pot;  unsteady separation 
phenomena a t  a thick trailing edge may be expected to produce a peak in Reynolds 
stress such as that seen in the data. A similar overshoot in Reynolds stress data has 
been reported by Ramaprian et al. (1982), who also used a model with a relatively 
thick trailing edge. The reported data indicate that the maximum Reynolds stress 
valucs diminish rapidly with distance from the trailing edge, and subsequent 
downstream stations are well represented by the present theory. 

The velocity and Reynolds stress profile predictions shown in figures 8-10 support 
the analysis described in $3  and the turbulence models proposed in $5. In the context 
of the general asymptotic analysis, note that the variation of centreline velocity 
measurements is well represented by the present theory, as shown in figure 7 .  In  
addition, the general analysis also predicts the variation of Reynolds stress gradient 
a t  the wake centreline, as given by (4.2); figures 8(b)-10(b) show clearly that this 
model-independent result is well supported by the measurements. Concerning the 
accuracy of the simple near-wake eddy viscosity models proposed here, it should be 
noted that the predicted Reynolds stress profiles shown in figures 8(b)-lO(b) are much 
more accurate in the near-wake region than reported results (Ramaprian et al. 1981) 
for fully numerical calculations using more complicated one- and two-equation 
turbulence models. 
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7. Summary 
A rational description of the symmetric flow in the near wake of a flat plate with 

a sharp trailing edge has been obtained using the method of matched expansions in 
the limit Re + co . A number of fundamental and general results have been obtained 
without recourse to a specific turbulence model. The turbulent near wake was found 
to have a double structure consisting of a thin inner-wake region near the wake 
centreline and a thick outer wake. The flow structure has some superficial similarities 
to the laminar trailing-edge problem but the mechanics of 1,he turbulent flow problem 
are substantially different. The primary effects of the change in boundary conditions 
at the trailing edge are contained in the inner wake; a similarity solution of the 
governing equation in this region shows that, to  leading order, the inner wake grows 
linearly with distance from the trailing edge. I n  addition, the general similarity 
solution shows that the centreline velocity varies logarithmically with the inner 
region lengthscale in a manner confirmed by experimental measurements. The outer- 
wake solution for the streamwise velocity is essentially a continuation of the outer- 
layer surface boundary-layer profile. The main difference from the surface boundary 
layer is that transverse flow toward the axis y = 0 develops to feed the accelerating 
flow in the inner wake. An O(A,)  x O(A,)  adjustment region in the outer layers at the 
trailing edge is required to accommodate the change in direction of the transverse 
velocity from the surface boundary layer to  the outer wabke. 

To obtain a solution for the velocity and Reynolds stress profiles in the near-wake 
region, an algebraic eddy viscosity model was proposed; this model has the simplest 
possible form that permits the symmetry condition for the streamwise velocity 
profile to be realized on the wake centreline. In  addition, the eddy viscosity model 
permits a simple transition from a conventional eddy viscosity distribution for 
surface boundary layers to a uniform eddy viscosity distribution for turbulent flow 
in the wake. Note that, as a consequence of the self-similar behaviour in the near- 
wake solution, the portion of the eddy viscosity that is linear gradually disappears 
(cf. figure 5 )  as the eddy viscosity reaches a uniform value across the wake; as this 
occurs, the portion of the streamwise profile containing logarithmic behaviour 
diminishes. In  predictions of several experimental flow situations, the analytical 
near-wake profiles provided accurate representations of' reported measurements. 
Indeed, the simple algebraic eddy viscosity models proposed here for the near-wake 
region appear to provide more accurate representations of the flow than those 
obtained in other studies using more complex one- and two-equation turbulence 
closures (cf. Ramaprian et al. 1981). 

This work was supported by the National Science Foundation under grant MEA- 
8016929. The second author would like to acknowledge the continuing support of the 
Air Force Office of Scientific Research for the development of surface layer 
turbulence models. 
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